题 目:The average tree solution for cooperative games with hypergraph communication structure(基于超图通讯结构合作博弈的平均树解)
演 讲 人:Dolf Talman,荷兰蒂尔堡大学教授
主 持 人:单而芳,十大正规网投官网平台(中国)有限公司教授
时 间:2019年4月17日(周三)上午9:30-11:00
地 点:校本部东区十大正规网投官网平台420室
主办单位:十大正规网投官网平台(中国)有限公司、十大正规网投官网平台(中国)有限公司青年教师联谊会
演讲人简介:
Dolf Talman 为荷兰蒂尔堡大学(Tilburg University)资深教授, 国际知名博弈论专家,国际期刊Optima.、Journal of Mathematical Economics、Journal of Mechanism and Institution Design副主编。蒂尔堡大学在经济与管理研究领域处于世界顶级水平,其经济学与商学在各类世界大学排名中始终位于世界前20位,欧洲前4位。Talman教授曾长期担任蒂尔堡大学计量经济与运筹学系系主任。在Games and Economic Behavior、Economic Theory、International Journal of Game Theory、European Journal of Operational Research等重要学术期刊上发表论文100多篇,其学术成就在国际博弈论领域具有较大影响。曾与公司联合培养博士生1名。
演讲内容简介:
The transferable utility games with limited cooperation can be represented by a hypergraph communication structure, called hypergraph games. Such a structure consists of a collection of coalitions, the hyperlinks of the hypergraph, for which it is assumed that only the coalitions that are hyperlinks or the connected union of hyperlinks are able to cooperate and obtain their worth. On the class of hypergraph games we introduce the average tree solution, being for each component of the hypergraph the average of a specific collection of marginal contribution vectors. On the class of cycle-free hypergraph games, the average tree solution is characterized by component efficiency and component fairness. The latter property states that when removing a hyperlink the average payoff difference is the same for every resulting component. While removing a link between two nodes in a cycle-free graph results in two components, this number can be more than two when a hyperlink in a cycle-free hypergraph is removed.
欢迎广大师生参加!